

XDAQ Porting Guide
From Version 2.x to 3.0

Johannes Gutleber
Luciano Orsini
CERN, February 2005

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 2

CERN
European Organization for Nuclear Research
Department PH/CMD
1211 Geneva 23
Switzerland

Take note!
Before using this information and the product it supports, be sure to
read the general information in Appendix: Special Notices on page 33.

First Edition (February 2005)
This edition applies to XDAQ V3.0 for Linux, Program Number xdaqcore_G_17559.
Comments may be addressed to:
Johannes Gutleber and Luciano Orsini
CERN, European Organization for Nuclear Research
Dept. PH/CMD Building 40 Internal Mailbox E-25810
1211 Geneva 23
Switzerland
© Copyright CERN 2005. All rights reserved.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 3

1. Introduction 4

2. Syntax Upgrade 5
2.1. Include Files 6
2.2. Namespaces 7
2.3. Application Class Declaration 8
2.4. Binding to Incoming Messages 9
2.5. Exported Variables 11
2.6. Intercepting Parameter Operations 13
2.7. Application Instantiation 14
2.8. Exceptions 15
2.9. Application Identifiers 17
2.10. Sending I2O Messages 18
2.11. Sending SOAP Messages 19
2.12. Memory Management 22
2.13. State Machines 24

3. Makefiles 26

4. XML Configuration 27
5. Peer Transports 29

6. xdaqWin 30
7. Getting Started with XDAQ 31

7.1. Installation 31
7.2. Running the Process 32

8. Appendix: Special Notices 33

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 4

1. Introduction

The XDAQ Porting Guide is intended to help experienced developers convert existing XDAQ
V2.x applications into applications that can run on XDAQ V3.0. It contains detailed information
about how to adapt and build your application using the revised API as well as step-by-step
instructions of the porting process.

Although V3.0 contains substantial API revision, almost no semantic changes are visible at
application level. It is important to keep this in mind during the porting. Therefore the general
guideline for porting applications can be condensed to the following three simple steps.

1. Only perform syntax modifications to have a compiling program for V3.0
2. Make the syntactically upgraded program run in V3.0
3. Add new features or exchange legacy features if required.

This porting guide deals with the first and biggest step that prepares you to have your application
running. The second step should then be straightforward and the indications on how to run the
xdaq process and the improved development/testing environment described in this document
should support you in carrying out this task.

If you have not yet installed XDAQ V3.0 please see section 7. This section also gives instructions
on how to start the XDAQ process.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 5

2. Syntax Upgrade

Familiarize yourself with the XDAQ 3 API by running Doxygen on the XDAQ 3 source code and
to look up the XDAQ 3 equivalents of the XDAQ 2 API. Doxygen is a program that produces
HTML pages of documentation that has been embedded by the programmers into the source
code. It is usually installed on the Linux operating systems at CERN. If it is not installed, please
get it from www.doxygen.org and follow the usage instruction.

If you are less familiar with XDAQ, start having a look at the example programs in
TriDAS/daq/examples/include. You will find the following programs (there may be additional
ones, but the listed ones are the most important):

HelloWorld.h…………………………………………………the simplest XDAQ application (start here)
SimpleSOAPReceiver.h……………………………how to receive a SOAP message
SimpleWeb.h……………………………………………………how to make a Web browser viewable application
SOAPStateMachine.h…………………………………Application with a state machine that can be
 driven using SOAP messages
WebStateMachine.h……………………………………Application with a state machine that can be
 driven through a Web page using a browser
AsynchronousSOAPStateMachine.h…Application with a state machine that can be
 driven using SOAP messages. Transitions are
 performed asynchronously in a thread.

We also advise you to have a look at the RoundTrip example program. This program can be
found in the distribution in the TriDAS/daq/benchmark/roundtrip/ directory. Please have a
look at the header and the source files in

 TriDAS/daq/benchmark/roundtrip/include/RoundTrip.h
 TriDAS/daq/benchmark/roundtrip/src/common/RoundTrip.cc

This example program uses most of the functionality that XDAQ 3.0 provides within a single
application. It is therefore an ideal entry point to understand which items require porting.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 6

2.1. Include Files
With the introduction of independent packages that can be used also for stand-alone applications
and the usage of C++ namespaces, include files end up in subdirectories under <package
name>/include. For example, toolbox general files are found in toolbox/include/toolbox.
Toolbox functions in subpackages that are specific for some operations are then found in
toolbox/include/toolbox/<subpackage name>. Accordingly, xdaq core include files are found
in TriDAS/daq/xdaq/include/xdaq.

To use these new include directories, specify the

#include”subpackagename/filename.h”

in your program.

To include the XDAQ abstract Application class that is found in
TriDAS/daq/xdaq/include/xdaq/Application.h, use for example

#include”xdaq/Application.h”

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 7

2.2. Namespaces
XDAQ 3 uses namespaces in all modules and libraries. Toolbox functions are for instance
preceeded by the toolbox:: qualifier. Namespaces can be stacked and the toolbox has for
example sub-namespaces like toolbox::mem or toolbox::net.
A view legacy classes such as the Task or SyncQueue are not yet moved to a namespace to
emphasize the change. They should be considered deprecated and serve only for coming to
running XDAQ V3.0 programs. You should consider replacing them with new functionalities in
the near future after you have familiarized yourself better with XDAQ V3.0.

Look up all functions that you use and figure out which
namespace qualifier needs to be added.

XDAQ applications (applications that have class-name and instance that that you use to declare in
an XML configuration file) do not have any namespace.

 Do not put your XDAQ application class into a namespace.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 8

2.3. Application Class Declaration

xdaqApplication used to be the class from which user applications inherited in V2.x. In V3.0
you can choose to inherit from one of two base classes:

1. xdaq::Application
2. xdaq::WebApplication

While xdaq::Application is the replacement for the former xdaqApplication,
xdaq::WebApplication shall be used as a base for applications that wish to expose HTML pages
that can be viewed using a browser.

As opposed to version 2.x, no implicit binding of pre-defined SOAP or I2O messages is done in
version 3.0. Therefore it is possible to receive messages of any protocol type in any application,
whether they extend the xdaq::Application or the xdaq::WebApplication interface.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 9

2.4. Binding to Incoming Messages
In order to intercept incoming messages, an application must bind a callback to a protocol/service
type combination. Currently three protocol/service types are supported in V3.0

1. SOAP (XML messages over http)
2. HTTP/CGI (data encapsulated in direct http POST/GET requests)
3. I2O (binary data over various lower transport levels)

In order to bind to SOAP messages do

#include “xoap/Method.h”
xoap::bind(applicationObject, &callback, soapMessageName, namespace);

applicationObject………………pointer to XDAQ application object (e.g. this)
callback………………………………………pointer to callback function
soapMessageName……………………text string with incoming SOAP function to bind to
namespace……………………………………text string with SOAP function namespace URI

SOAP callbacks have to implement the following signature:

xoap::MessageReference callback (xoap::MessageReference msg)
 throw (xoap::exception::Exception);

XDAQ V3.0 implements the standard SOAP specifications. Therefore, namespaces are used in
the SOAP XML messages. In order for an XDAQ application incercept incoming SOAP
messages, it has to be informed which namespace string is used in the incoming XML message.
The XDAQ core uses a predefined namespace string called XDAQ_NS_URI that resolves to the text
string urn:xdaq-soap:3.0. This namespace declaration may also be used for user applications,
but then the programmer must be aware of the fact that name clashes may occur any time. We
recommend to use your own namespace declarations and to follow the URN notation (e.g.
urn:<application name>-soap:<version number>).

Note that the callback signature defines an exception. Only this exception may be thrown in the
user application callback. If your legacy callback implementation throws another type of
exception, catch it and convert it using the following macro:

XCEPT_RETHROW (xoap::exception::Exception, “Message”, yourException);

Note that yourException must inherit from the xcept::Exception base class. See more on the
revised exception handling in the associated section 2.8.

In order to bind to HTTP/CGI messages do

#include “xgi/Method.h”
xgi::bind(applicationObject, &callback, URLPath);

applicationObject………………pointer to XDAQ application object (e.g. this pointer)
callback………………………………………pointer to callback function
URLPath…………………………………………text string with incoming URL to bind to

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 10

HTTP/CGI callbacks have to implement the following signature:

void callback (xgi::Input * in, xgi::Output * out)
 throw (xgi::exception::Exception)

Since HTTP/CGI was not enabled in V2.x the interested reader is pointed to the example
programs and the documentation of the CGICC package at
www.gnu.org/software/cgicc/cgicc.html.

In order to bind to I2O messages do

#include “i2o/Method.h”
i2o::bind(applicationObject, &callback, I2OFunctionCode, I2OFunctionClass);

Example:
i2o::bind (this, &RoundTrip::token, I2O_TOKEN_CODE, XDAQ_ORGANIZATION_ID);

applicationObject………………pointer to XDAQ application object (e.g. this)
callback………………………………………pointer to callback function
I2OFunctionCode……………………Numeric identifier of the incoming I2O message
 (included in the message header) used to associate the
 callback function
I2OFunctionClass…………………A numeric offset to associate function identifiers to
 regions in order to avoid clashes between applications that
 use the same function identifiers. The macro
 XDAQ_ORGANIZATION_ID resolves to 0x0 and
 therefore no offsetting will be performed when using this code.

I2O binary callbacks have to implement the following signature:

void callback (toolbox::mem::Reference* arg)
 throw (i2o::exception::Exception)

The user in this callback using must recycle the received memory buffer with

arg->release();

The V2.x frameFree() no longer exists.
The i2oListener class no longer exists.
i2oBindMethod() no longer exist.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 11

2.5. Exported Variables

Application variables that used to be exported in V2.x with the exportParam call are now
exported by putting them into an “Infospace”. Infospaces are a new feature in V3.0.

 An Infospace is a container for variables that can be shared
 among XDAQ applications within a single process.

Additions will later on extend the sharing of variables over the network to applications to
different processes and computers.
By default each XDAQ application in V3.0 has an Infospace for the variables that it wishes to
make visible. The default application Infospace is accessed by the following call within an
application:

this->getApplicationInfoSpace();

Variables are “exported” using

getApplicationInfoSpace()->fireItemAvailable(
 const string & name,
 xdata::Serializable * serializable,
 void * originator = 0
)
 throw (xdata::exception::Exception);

name…………………………………the name through which the variable can be seen (no white-spaces allowed)
serializable……………pointer to an exportable variable (needs to be an xdata::Serializable)
originator…………………cookie to remember who published the variable

Example: to export a number and a string declare the following instance variables:

xdata::UnsignedLong counter_;
xdata::String hostname_;

In the constructor of your application, replace exportParam with

getApplicationInfoSpace()->fireItemAvailable("counter",&counter_);
getApplicationInfoSpace()->fireItemAvailable("hostname",&hostname_);

 All exported variables are xdata:: variables.

You need to replace all V2.x xdaqXX datatypes or native C++ datatypes of exported variables.
Xdata is a new package in V3.0.

In V2.x it was possible to directly print out exported variables since it was possible to pass native
C++ datatypes to exportParam. In V3.0 you need to cast xdata:: datatypes explicitly to the
native datatype contained before putting them as parameters to a cout or printf statement.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 12

Example:

std::printf (“A number: %d, a string: %s\n”,
 (unsigned long) counter_, (std::string) hostname_);
std::cout << “A number “ << (unsigned long) counter_
 << “, a string: “ << (std::string) hostname_);

Arithmetic operations on xdata:: datatypes are not defined at this point. To increment an
xdata::UnsignedLong for example you must do one of the following

1) i = i + 1;
2) i.value_++;

Option one is preferred at this point, since the direct access of the internal variable value_ may
be replaced by an API function in later versions.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 13

2.6. Intercepting Parameter Operations

In V2.x very specific calls have been provided to intercept settings and retrievals of exported
parameters. A special callback was provided to intercept the setting of the default parameters. In
V3.0 the model has been generalized. No specific calls are needed anymore. Instead, the user
attaches listeners to the Infospace and can intercept read or write operations at any time.

Use the Infospace API to intercept parameter access/modifications

In order to attach a listener, we recommend that the application also inherits from
xdata::ActionListener. Then a callback with the following signature can be declared:

void actionPerformed (xdata::Event& e);

The callback can be attached to various events in the constructor, here for example to the retrieval
of an “exported” parameter. For each exported variable another listener may be attached. Such the
granularity can be tuned according to the applications needs. The first parameter is the text
identifier of the parameter to be attached to, the second parameter is a pointer to the callback
listener object (in this case the xdaq application that also inherits from xdata::ActionListener).

getApplicationInfoSpace()->addItemRetrieveListener ("counter", this);
getApplicationInfoSpace()->addItemRetrieveListener ("hostname", this);

It is possible to attach to the following events:

• addItemAvailableListener(xdata::ActionListener * l)
 listen to the addition of variables to the Infospace

• addItemRevokedListener(xdata::ActionListener * l)
 listen to the removal of variables from the Infospace
• addItemChangedListener(const string& name, xdata::ActionListener * l)
 called back when the item called “name” has been written
• addItemRetrieveListener(const string& name, xdata::ActionListener * l)
 called back when the item called name is going to be read (before it is really
 read – that offers the opportunity to assign values to the variable just before the
 variable is read)

There is not listener yet for the use case that an application wants to intercept right before the
variable is going to be assigned a new value. That will be included in a further version of XDAQ.
There is not specific listener anymore for the setting of the default parameters.
It is still possible to directly intercept the SOAP ParameterGet and ParameterSet calls by
overriding the

• virtual xoap::MessageReference ParameterGet
(xoap::MessageReference message) throw (xoap::exception::Exception);

• virtual xoap::MessageReference ParameterSet
(xoap::MessageReference message) throw (xoap::exception::Exception);

functions. However, you must at the end of your implementation call the xdaq::Application
implementations of these functions using

• xdaq::ParameterGet(message);

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 14

• xdaq::ParameterSet(message);

2.7. Application Instantiation

All application loader classes (the applicationSO class) can be removed. There is no plugin
function anymore. Applications can already perform useful work in the constructor since the
whole environment is ready at this time.

Applications are instantiated automatically.

The user must put the following macro statement in the implementation file (.cc) of his
application

XDAQ_INSTANTIATE (ApplicationClassName)

ApplicationClassName is the exact C++ class name of the XDAQ application class that is to be
defined.

Currently it is not allowed to put this class into a namespace.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 15

2.8. Exceptions

Exceptions can be raised using the XCEPT_RAISE macro. XDAQ_LOG_AND_RAISE no longer exists.
The XCEPT_RAISE macro takes two parameters: an exception that inherits from the
xcept::Exception top class and a text string.

To raise an exception in a SOAP callback do the following

XCEPT_RAISE (xoap::exception::Exception, “This is an exception”);

To raise an exception in an I2O callback to the following

XCEPT_RAISE (i2o::exception::Exception, “This is an exception”);

To raise an exception in a CGI callback to the following

XCEPT_RAISE (xgi::exception::Exception, “This is an exception”);

Since an application must raise the exception that has been specified in the signature, any other
exceptions must be converted.

XDAQ V3.0 supports the stacking of exceptions. Use it.

Such, at the end of the exception chain, the history (comparable to the Java virtual machine stack
trace) can be printed. To stack an exception use the XCEPT_RETHROW macro. It takes three
parameters, the exception to be raised, a text string and the exception that has been caught, e.g.:

 try
 {
 do_something();
 catch (xdaq::exception::Exception& e)
 {
 XCEPT_RETHROW (xoap::exception::Exception, “do_something failed.”, e);
 }

The “stack” of exceptions can be printed to a string using:

std::string xcept::stdformat_exception_history(xcept::Exception& e)

The “stack” of exceptions can be formatted in HTML as a string using

std::string htmlformat_exception_history (xcept::Exception& e)

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 16

We recommend that every application defines its own exceptions that extend the
xcept::Exception top class as follows:

Create a file yourpackage/include/yourpackage/exception/Exception.h with the following:

namespace yourpackage {
 namespace exception {
 class Exception: public xcept::Exception
 {
 public:
 Exception(std::string name,
 std::string message,
 std::string module,
 int line,
 std::string function)
 : xcept::Exception(name, message, module, line, function)
 {}

 Exception(std::string name,
 std::string message,
 std::string module,
 int line,
 std::string function,
 xcept::Exception & e)
 : xcept::Exception(name, message, module, line, function, e)
 {}
 };
 }
}

You will then have an exception called yourpackage::exception::Exception. In the same
subdirectory you may than create other specific exceptions that inherit from
yourpackage::exception::Exception.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 17

2.9. Application Identifiers

Applications do not require anymore an instance number and an I2O target identifier (tid). If the
I2O protocol is used, an application must have an instance number. Every application is assigned
a tid that is used for I2O addressing in the XML configuration file by adding the following
section:

<i2o:protocol xmlns:i2o="http://xdaq.web.cern.ch/xdaq/xsd/2004/I2OConfiguration-30">
 <i2o:target class="ClassName" instance="0" tid="23"/>
 <i2o:target class="ClassName" instance="1" tid="24"/>
 […]
</i2o:protocol>

We recommend adding this section right before the first <Context> declaration.
A tid can be any number between 1 and 2048.

To retrieve its instance, an application should do

if (getApplicationDescriptor()->hasInstanceNumber())
{
 getApplicationDescriptor()->getInstance();
}

To retrieve its own tid an application can do

i2o::utils::getAddressMap()->getTid(this->getApplicationDescriptor());

All addressing and sending of messages in V3.0 is based on application descriptors.

Application descriptors are objects that represent XDAQ applications. They are not the
applications and do not contain the application objects.
The following code snippet gives an idea on how to retrieve the application descriptors of all
remote XDAQ applications called Example:

try
{
 std::vector<xdaq::ApplicationDescriptor*> destination =
 getApplicationContext()->
 getApplicationGroup()->
 getApplicationDescriptors("Example");
} catch (xdaq::exception::Exception& e)
{
 XCEPT_RAISE (xcept::Exception, "Application not found");
}

The application group is a class that contains the descriptors of all applications that have been
defined in an XML configuration file. It is retrieved using

getApplicationContext()->getApplicationGroup();

This class offers a rich variety of functions to retrieve application descriptors. See the file
TriDAS/daq/xdaq/include/xdaq/ApplicationGroup.h

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 18

2.10. Sending I2O Messages

To send an I2O message use

void xdaq::ApplicationContext::postFrame (
 toolbox::mem::Reference * ref,
 xdaq::ApplicationDescriptor* originator,
 xdaq::ApplicationDescriptor* destination)
 throw (xdaq::exception::Exception)

The frameSend of V2.x no longer exists.
The postFrame takes a reference to a memory buffer and two application descriptors; the source
(usually this->getApplicationDescriptor()) and the destination (to be retrieved as shown
above).

Remember always to try/catch around this call, since an exception may be raised if the message
cannot be queued for sending. Intercepting the failure of sending is more complicated and a
specific user guide for this will be provided.

A complete example with buffer allocation for sending an I2O message from within an
application is outlined here:

try
{
 // Get a buffer of 1024 Bytes from a pool called “pool”
 toolbox::mem::Reference* ref =
 toolbox::mem::getMemoryPoolFactory()->getFrame(“pool”, 1024);

 // prepare frame
 PI2O_TOKEN_MESSAGE_FRAME frame = (PI2O_TOKEN_MESSAGE_FRAME) ref->getDataLocation();

 frame->PvtMessageFrame.StdMessageFrame.MsgFlags = 0;
 frame->PvtMessageFrame.StdMessageFrame.VersionOffset = 0;
 frame->PvtMessageFrame.StdMessageFrame.TargetAddress =
 i2o::utils::getAddressMap()->getTid(destination);
 frame->PvtMessageFrame.StdMessageFrame.InitiatorAddress =
 i2o::utils::getAddressMap()->getTid(this->getApplicationDescriptor());

 // Send a message of 500 Bytes
 frame->PvtMessageFrame.StdMessageFrame.MessageSize = 500 >> 2;
 frame->PvtMessageFrame.StdMessageFrame.Function = I2O_PRIVATE_MESSAGE;
 // The callback function code must be defined at the destination and
 // the callback function must be bound with i2o::bind to this code
 frame->PvtMessageFrame.XFunctionCode = I2O_CALLBACK_FUNCTION_CODE;
 frame->PvtMessageFrame.OrganizationID = XDAQ_ORGANIZATION_ID;

 ref->setDataSize(500); // message shall contain 500 Bytes

 getApplicationContext->postFrame(ref, getApplicationDescriptor, destination);
}
catch (xdaq::exception::Exception& e)
{
 // error handling
}

Do not forget to call ref->setDataSize(size) to tell the amount of bytes to be sent. This size
must be smaller or equal to the amount of bytes allocated and it includes the I2O message header
size (it is therefore the total amount of Bytes sent).

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 19

2.11. Sending SOAP Messages

The call SOAPMessage frameSend (SOAPMessage & message) no longer exists.

To send a SOAP message use

xoap::MessageReference postSOAP (
 xoap::MessageReference message,
 xdaq::ApplicationDescriptor* destination,
 std::string network ="")
 throw (xdaq::exception::Exception)

The postSOAP takes a reference to a xoap SOAP message and a destination application
descriptor. In addition it is possible to choose the network over which the SOAP call should be
performed (in case multiple logical TCP/IP networks have been defined). Do not use this option
in XDAQ V3.0. Detailed documentation on how to use this feature will be provided. Here is an
example for sending a SOAP message.

xoap::MessageReference msg = xoap::createMessage();
xoap::SOAPPart soap = msg->getSOAPPart();
xoap::SOAPEnvelope envelope = soap.getEnvelope();
xoap::SOAPBody body = envelope.getBody();

// Always create SOAP with namespaces, here an example for
// <xc:Command xmlns:xc=”urn:my-application-soap:1.0></xc:Command>
//
xoap::SOAPName command = envelope.createName("Command","xc", "urn:my-soap:1.0");
body.addBodyElement(command);

try
{
 // Set destination ApplicationDescriptor as explained before
 xoap::MessageReference reply = getApplicationContext()->postSOAP(msg, destination);
} catch (xdaq::exception::Exception& e)
{
 LOG4CPLUS_ERROR (getApplicationLogger(), xcept::stdformat_exception_history(e));
}

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 20

Usually it is only possible to send SOAP messages to applications that have been declared in an
XML configuration file. Only then the application descriptor can be found using the
xdaq::ApplicationGroup API.
It is, however, sometimes desirable to send SOAP messages to arbitrary destinations, e.g. Web
servers. In this case it is possible to send a message creating a messengers on the fly as outlined in
the following complete example.

// Create SOAP message
xoap::MessageReference msg = xoap::createMessage();

// Fill SOAP message
xoap::SOAPPart soap = msg->getSOAPPart();
xoap::SOAPEnvelope envelope = soap.getEnvelope();
xoap::SOAPBody body = envelope.getBody();

// Always create SOAP with namespaces, here an example for
// <xc:Command xmlns:xc=”urn:my-application-soap:1.0></xc:Command>
//
xoap::SOAPName command = envelope.createName("Command","xc", "urn:my-soap:1.0");
body.addBodyElement(command);

pt::PeerTransportAgent* pta = pt::getPeerTransportAgent();

try
{
 // Addresses that are created on the fly are reference counted and are therefore
 // deleted automatically after usage
 std::string url = “http://hostname:port”;
 pt::Address::Reference destAddress = pta->createAddress(url+"/soap");
 pt::Address::Reference localAddress =
 pt::getPeerTransportAgent()->createAddress(
 getApplicationContext()->getContextDescriptor()->getURL()+"/soap");

 // Do not merge the following two lines into one
 pt::Messenger::Reference mr = pta->getMessenger(destAddress,localAddress);
 pt::SOAPMessenger& m = dynamic_cast<pt::SOAPMessenger&>(*mr);

 // fill the SOAPAction field
 // urn is used to route a SOAP message within a server to a destination
 // For xdaq applications, an urn always looks as follows:
 // urn:xdaq-application:id=<number>
 //
 msg->getMimeHeaders()->setHeader("SOAPAction", urn);

 // send message
 xoap::MessageReference r = m.send (msg);

 xoap::SOAPBody rb = r->getSOAPPart().getEnvelope().getBody();
 if (rb.hasFault()) {
 LOG4CPLUS_ERROR (getApplicationLogger(), rb.getFault().getFaultString());
 }
} catch (pt::exception::Exception& pte)
{
 XCEPT_RETHROW(xdaq::exception::Exception, "failed to send SOAP message", pte);
}

Xoap SOAP messages are reference counted and associated memory is

released automatically when no other variable points anymore to the message.

Do never initialize a SOAP message with

Xoap::MessageReference msg = 0;

Message references are automatically initialized when xoap::createMessage() is called.
Assigning another xoap::MessageReference to an existing xoap::MessageReference will

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 21

release the memory used by the message that is assigned.

Remember always to try/catch around the send calls, since an exception may be raised if the
message cannot be sent.

SOAP operations are synchronous.

That means that every SOAP request has a SOAP reply. It does not mean that the activated
remote function performs its operation synchronously.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 22

2.12. Memory Management

V2.x supported only a single memory pool per process. To allocate frames and to recycle them
the following API functions have been frequently used:

BufRef * frameAlloc(unsigned long size);
void frameFree(BufRef * ref);

These functions together with all other pool management functions have been refurbished. The
class BufRef has been replaced with toolbox::mem::Reference.

V3.0 supports multiple memory pools that can be used concurrently.

An application that wishes to allocate buffers from a pool needs to either create a pool or attach to
a pool that has been created by another application. There is no default memory pool.
To create an ordinary pool of virtual heap memory use

try
{
 // Create a pool that may expand up to 1 MByte (1024 * 1024 Bytes)
 toolbox::mem::CommittedHeapAllocator* a =
 new toolbox::mem::CommittedHeapAllocator(1024*1024);
 toolbox::net::URN urn("toolbox-mem-pool", "MyPool");
 toolbox::mem::Pool* pool = toolbox::mem::getMemoryPoolFactory()->createPool(urn, a);
} catch (toolbox::mem::exception::Exception& e)
{
 LOG4CPLUS_ERROR (getApplicationLogger(), xcept::stdformat_exception_history(e));
}

Allocating physical memory is possible with similar functions. This goes, however, beyond the
scope of this porting guide. Detailed guidelines on this topic will be prepared.

This pool can be retrieved later on with the function

toolbox::mem::Pool* MemoryPoolFactory::findPool(toolbox::net::URN&urn)
 throw(toolbox::mem::exception::MemoryPoolNotFound)

Pools that an application has created must be deleted by calling

void MemoryPoolFactory::destroyPool(toolbox::net::URN& urn)
 throw (toolbox::mem::exception::MemoryPoolNotFound);

To allocate a memory buffer from a pool use

toolbox::mem::Reference* MemoryPoolFactory::getFrame (
 toolbox::mem::Pool* pool,
 unsigned long size)
 throw (toolbox::mem::exception::Exception);

To give the memory back to the pool call release on the reference, e.g.

toolbox::net::URN urn("toolbox-mem-pool", "MyPool");
Toolbox::mem::Pool* pool = toolbox::mem::getMemoryPoolFactory()->findPool(urn);
toolbox::mem::Reference* ref = toolbox::mem::getMemoryPoolFactory()->getFrame(pool,1000);
ref->release();

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 23

Each pool can be instrumented with high and low watermark thresholds. There exist also APIs for
checking threshold violations. This topic goes beyond the scope of this guide and separate
documentation will be provided.

References can be chained like in V2.x. Instead of BufRef::chainNext use now

toolbox::mem::Reference::setNextReference (Reference * ref)

The BufRef::next() call has been superseded by

toolbox::mem::Reference* toolbox::mem::Reference::getNextReference()

BufRef->data() has been superseded by

void* toolbox::mem::Reference::getDataLocation()

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 24

2.13. State Machines

V2.x featured a built-in state machine. Each application could make use of a predefined state-
machine that was possible to change. To improve flexibility the state-machine classes have been
improved and factorized out of the xdaq application container. As a result, state machines can be
used if needed in XDAQ applications and in stand-alone applications and they can be defined
with more ease. If you wish, you may also re-define the legacy state machine in your ported code.

Here, we only consider the synchronous state machine. More detailed information will be
provided separately for the asynchronous state machine that can easily make any synchronous
operation into a co-routine.

State machines can be synchronous and asynchronous in V3.0
There is no default hard-wired state machine.

To define a state machine, declare an instance variable

toolbox::fsm::FiniteStateMachine fsm_;

Define the state machine in the constructor of your application using the following calls

void toolbox::fsm::FiniteStateMachine::addState(State s,
 const std::string & name,
 OBJECT * obj,
 void (OBJECT::*stateChanged)(toolbox::fsm::FiniteStateMachine &))
 throw (toolbox::fsm::exception::Exception)

void toolbox::fsm::FiniteStateMachine::setInitialState(State s)
 throw (toolbox::fsm::exception::Exception)

void toolbox::fsm::FiniteStateMachine::addStateTransition(
 State from,
 State to,
 const std::string& input,
 OBJECT * obj,
 void (OBJECT::*func)(toolbox::Event::Reference))
 throw (toolbox::fsm::exception::Exception)

The State type corresponds currently to a simple character. Such it is possible to define human
readable states (e.g. ‘H’ for “Halted”, ‘R’ for “Running”) by maintaining high efficiency when it
comes to frequently querying the state (for example in polling loops).

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 25

The functions addState and addStateTransition take an OBJECT and a OBJECT::*func method
pointer parameter. OBJECT can be any application class that extends toolbox::lang::Class and
the method is a pointer to a member function with the signature

void stateChanged (toolbox::fsm::FiniteStateMachine & fsm)
 throw (toolbox::fsm::exception::Exception)

for a state change callback and

void callbackName (toolbox::Event::Reference e)
throw (toolbox::fsm::exception::Exception)

for a state transition callback.

Each state machine has by default a state “Failed” (name ‘F’) and a state transition to the “Failed”
state defined. It is possible to attach callback to these two actions.

For a full working example, please consult the source code of

TriDAS/daq/examples/include/SOAPStateMachine.h

This example also explains how to connect a defined state machine for incoming SOAP
messages.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 26

3. Makefiles

Makefiles are unchanged in V3.0. Due to the modified package directories it makes however
sense to provide here a re-usable Makefile template that includes most of the used include and
library directories.

The following statements prepare the automatic setting of the XDAQ_ROOT variable. The number of
../../.. directives depends on the location of your package. It specifies the way back to the
TriDAS directory. For instance residing in TriDAS/daq/mypackage/mysubpackage will require
three steps: ../../..

XDAQ_BACK_TO_ROOT:=../../..
include $(XDAQ_BACK_TO_ROOT)/config/mfAutoconf.rules
include $(XDAQ_ROOT)/config/mfDefs.$(XDAQ_OS)

The following directives determine the package name and the source files to be compiled into the
specified dynamic library

Project=daq
Package=mypackage/mysubpackage

Sources= File1.cc File2.cc
DynamicLibrary=MyXDAQApplication
StaticLibrary=

The following include directories are frequently used in XDAQ applications. All include
directories of TriDAS/daq/mypackage/mysubpackage are already automatically added.

IncludeDirs = \
 $(XDAQ_ROOT)/daq/extern/xerces/$(XDAQ_OS)$(XDAQ_PLATFORM)/include \
 $(XDAQ_ROOT)/daq/extern/cgicc/$(XDAQ_OS)$(XDAQ_PLATFORM)/include \
 $(XDAQ_ROOT)/daq/extern/log4cplus/$(XDAQ_OS)$(XDAQ_PLATFORM)/include \
 $(XDAQ_ROOT)/daq/toolbox/include \
 $(XDAQ_ROOT)/daq/xdaq/include \
 $(XDAQ_ROOT)/daq/pt/include \
 $(XDAQ_ROOT)/daq/xgi/include \
 $(XDAQ_ROOT)/daq/i2o/include \
 $(XDAQ_ROOT)/daq/i2o/utils/include \
 $(XDAQ_ROOT)/daq/toolbox/include/$(XDAQ_OS) \
 $(XDAQ_ROOT)/daq/toolbox/include/solaris \
 $(XDAQ_ROOT)/daq/xoap/include \
 $(XDAQ_ROOT)/daq/xdata/include \
 $(XDAQ_ROOT)/daq/xcept/include \
 $(XDAQ_ROOT)/daq \
 $(XDAQ_ROOT)/daq/extern/i2o/include/ \
 $(XDAQ_ROOT)/daq/extern/i2o/include/i2o \
 $(XDAQ_ROOT)/daq/extern/i2o/include/i2o/shared

Put the following line at the end of the Makefile

include $(XDAQ_ROOT)/config/Makefile.rules

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 27

4. XML Configuration
The tag names of the XML configuration have been changed. Here is the list of modifications.

Old New
<Host
 id="0"
 url="http://hostname:port">

<Context

 url="http://hostname:port">

<Application
 class="RoundTrip"
 targetAddr="#"
 instance="#"
 network="name">

<Application
 class="name"
 id="#"
 instance=”#”
 network="local"
 resident="true/false">
network must be given (can be “local”)
resident is for pre-loaded applications only
instance is optional

<urlApplication>
 path
</urlApplication>

<Module>
 path
<Module>

<Transport
 class="name"
 targetAddr="#"
 instance="#">

Simplified: also use <Application> tag now

<Address
 type="name"

 hostname="hostname"
 port="#"
 network="name"/>

<Endpoint
 protocol="name"
 service="name"
 hostname="name or IP"
 port="#"
 network="name"/>
All <Endpoint> tags have now protocol and service. For
binary messages over TCP/IP select protocol=”tcp”,
service=”i2o”.

<Partition> <Partition>
<DefaultParameters>
 <Parameter name="samples"
 type="unsigned long"> 1000
 </Parameter>
</DefaultParameters>

<properties
 xmlns="urn:xdaq-application:Classname"
 xsi:type="soapenc:Struct">
 <samples xsi:type="xsd:unsignedLong">
 1000
 </samples>
</properties>
The variable names are now encoded in the tag names.
Types of variables need to be provided using xsd data
types.

I2O addressing was previously
merged into the <Application> tag

<i2o:protocol
xmlns:i2o="http://xdaq.web.cern.ch/xdaq/xsd/200
4/I2OConfiguration-30">
<i2o:target class="name" instance="#" tid="#"/>
<i2o:target class="name" instance="#" tid="#"/>
</i2o:protocol>

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 28

Old New
2. Possibilities
<Unicast
 class="name"
 instance="#"
 network="name"/>

<Unicast
 class=”name”
 network=”name”/>

3. Possibilities
<Unicast
 class="name"
 instance="#"
 network="name"/>

<Unicast
 class=”name”
 network=”name”/>

<Unicast
 url=”url”
 id=”#”/>

<Definitions>
 <ClassDefid="#">
 name
 </ClassDef>
</Definitions>

Deprecated. Numeric class identifiers are not needed.

XML namespaces are now used throughout the whole configurations. Please have a look at some
example configurations, for instance in TriDAS/daq/benchmark/roundtrip/TCP.xml.

An XDAQ application is unambiguously defined by
its local numeric identifier (id) within a context (url).

Therefore the URL for an XDAQ application uniquely identifies the application:

http://hostname:port/urn:xdaq-application:class=ClassName;id=#

Local identifiers for applications in the <Application> tag should be higher than 10. They do not
need to be consecutively ordered. They do not need to be unique within the partition (The local
identifier of an application can be the same in two different contexts).

An application whose resident attribute is set to true is assumed to be present at the start-up of
the XDAQ process. It will therefore not be loaded into the process. Only its descriptor is created.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 29

5. Peer Transports

The following peer transports are delivered with XDAQ V3.0

Name Description
PeerTransportFifo Implements the “local” network for process internal communication
PeerTransportHTTP Implements the protocol http with the two services SOAP and CGI. The

peer transport aims at supporting the HTTP 1.1 protocol, namely with the
keep-alive option to improve the efficiency of POST requests. Both POST
and GET requests are supported.

PeerTransportTCP Supports the protocol TCP and the service I2O for binary messaging. The
send operations are non-blocking at application level. Currently a single
thread is used at the receiver side for each interface card on which
messages are expected (for each defined endpoint at the receiver side).
For sending one thread is active.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 30

6. xdaqWin

The Java development and testing client xdaqWin is deprecated. Although it is comptabile with
XDAQ V3.0 it is not further developed and may become out of date quickly.

All development and test operations can be carried out using HyperDAQ facilities. For this
purpose the user may connect with a Web browser to a running XDAQ process to perform the
same operations that xdaqWin offered.

xdaqWin provided an embedded Tcl interpreter for automatizing some repetitive tasks. Scripting
is now facilitated. Through SOAP and HyperDAQ functionality any scripting language that
provides SOAP or HTTP requests can be used for scripting.
In addition scripting can be performed on any UNIX command line shell using the wget and curl
commands.

The HyperDAQ facilities in V3.0 supports the following browsers

• Microsoft Internet Explorer V5.2 on Mac OS X
• Microsoft Internet Explorer V6.0 on Windows XP

Java 1.4.2 is required for using the Web applets.

Other browsers and browser platforms will soon be supported.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 31

7. Getting Started with XDAQ
7.1. Installation

This section contains generic instructions for creating a basic XDAQ installation.

The Makefile attempts to guess correct values for various system-dependent variables used during
compilation. It uses those values to perform the build operations in each directory of the
packages. The simplest way to install the package is:

1. Unpack the tarball (creates a directory named TriDAS)
tar -xvzf xdaqcore_G_17559_V3_0.tgz

2. Set the XDAQ_ROOT environment variable to the directory of the unpacked TriDAS

directory, e.g. for tcsh
setenv XDAQ_ROOT <path to current directory>/TriDAS
for bash:
export XDAQ_ROOT=<path to current directory>/TriDAS

3. cd to the $XDAQ_ROOT/daq directory containing the project's C++ Makefile and type

make Set=external
to build all external packages that are required for XDAQ.

4. Type make Set=xdaq3 to compile the XDAQ package.

Note: Ignore all warning output - these are placeholders for future developments and
serve as a reminder that the functionalities are not in place in this version.

5. Check your system's Java installation by tpying java –version

Make sure that the reported Java version number is 1.4.2_xx.
Make sure that the java compiler can be invoked by typing javac

6. cd to the $XDAQ_ROOT/java directory containing the project's Java Makefile and type

make Set=xdaq3 to build all Java packages that are required for XDAQ.

Compilers and Systems for XDAQ Version 3.0:
The required C and C++ compiler is gcc version 3.2.3. The required Linux version is Scientific
Linux CERN 3. This release has been compiled on kernel version 2.4.21-15.0.3.EL.cernsmp.
You can check your kernel version of Linux by typing uname -r

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 32

7.2. Running the Process

To run the XDAQ process perform the following steps:

1. Set your XDAQ_ROOT environment variable to the directory of the TriDAS distribution
In tcsh: setenv XDAQ_ROOT ~/TriDAS
In bash: export XDAQ_ROOT=~/TriDAS

2. cd to the $XDAQ_ROOT/daq/xdaq/bin/linux/x86 directory.
3. Run the XDAQ process by typing ./xdaq.sh

This script takes a number of parameters that it forwards to the xdaq.exe process.
a. -p <number>

port numbert on which the XDAQ process shall listen for HTTP and SOAP
requests. By default the port used by the process is 40000.

b. -h <IP or name>
hostname or IP number that the XDAQ process shall use to listen for HTTP and
SOAP requests

c. -l <label>
debug level to be used by default for log messages. Possible labels are DEBUG,
INFO, WARN, ERROR, FATAL. The default log level is INFO.

 When the process starts successfully you should see something like this:

 [xdaq@LXCMDXYZ x86]$./xdaq.sh
 Run xdaq with options
 01-25-05 10:45:19,712 [3067717984] INFO http://lxcmdXYZ:40000 <xdaq> - xdaq Version: 3.0
 01-25-05 10:45:19,713 [3067717984] INFO http://lxcmdXYZ:40000 <xdaq> - xdaq URL:
 http://lxcmdXYZ:40000
 Work loop name: fifo/PeerTransport
 Work loop name: xrelay
 Work loop name: urn:toolbox-task-workloop:http://lxcmdXYZ:40000
 01-25-05 10:45:19,808 [3067717984] INFO http://lxcmdXYZ:40000 <xdaq> - XDAQ Ready.

XDAQ Porting Guide
From Version 2.x to 3.0

 CERN 2005 33

8. Appendix: Special Notices

This publication is intended to help application developers port their applications to the XDAQ
V3.0 software platform. The information in this publication is not intended as the specification of
any programming interfaces that are provided by the XDAQ V3.0 software platform. See the
XDAQ Web site at http://cern.ch/xdaq for more information about what publications are
considered to be product documentation.
References in this publication to products, programs or services do not imply that we intend to
make these available. Any reference to a product, program, or service is not intended to state or
imply that only this product, program, or service may be used. Any functionally equivalent
program may be used instead of the referenced product, program or service.
Information in this book was developed in conjunction with use of the equipment specified, and is
limited in application to those specific hardware and software products and levels.
The information contained in this document has not been submitted to any formal test and is
distributed AS IS. The use of this information or the implementation of any of these techniques is
your responsibility and depends on your ability to evaluate and integrate them into your
operational environment. While each item may have bee reviewed by us for accuracy in a specific
situation, there is no guarantee that the same or similar results will be obtained elsewhere. Users
attempting to adapt these techniques to their own environments do so at their own risk.
Any pointers in this publication to external Web sites are provided for convenience only and do
not in any manner serve as an endorsement of these Web sites.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.
Microsoft, Windows, Windows XP, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.
UNIX is a registered trademark in the United States and other countries licensed exclusively
through The Open Group.
Intel and Itanium are trademarks of the Intel Corporation.
Other company, product, and service names may be trademarks or service marks of others.

